B样条理论 (B-Spline)整理B样条相关知识。

Agreement

相关术语

1. 控制点(control points)

控制点可以决定曲线形状,曲线的每一点都是由控制点加权生成。

2. 节点向量(knot vector)

节点向量是一系列参数值。其 节点数=控制点数+次+1,其划分了参数空间,跨过节点意味着不同的控制点生效。它是单调不减的。

它通常以order重节点开始和结束。节点向量描述的是曲线通过控制点的时间,如 (0, 0, 1, 2, 3, 3) 和 (0, 0, 2, 4, 6, 6) 描述的曲线相同,因此可以归一化到[0, 1]之间取值。

3. 阶(order)

ORDER : The order of a differential equation is the order of the highest derivative involved in the equation.

样条中 order=degree+1,我也不知道为啥,大家都这么说,我也不敢问。。。:joy:

Hence, second-order curves (which are represented by linear polynomials) are called linear curves, third-order curves are called quadratic curves, and fourth-order curves are called cubic curves. The number of control points must be greater than or equal to the order of the curve.

Wiki 中这么说,含义自己体会,我觉得这order就是用来表示最少控制点数(瞎逼逼别当真:laughing:)

4. 次(degree)

DEGREE: The degree of a differential equation,of which the differential coefficients are free from radicals and fractions, is the positive integral index of the highest power of the highest order derivatives involved.

For example, in the following equation,

$\frac{d^2y}{dx^2}+3\frac{dy}{dx}+2y=0$

Order:2, degree:1 .

关于阶(order)和次(degree)的区分,可参考 Quora .

样条中这个表示多项式的最大指数,无疑了

5. 基函数(basis functions)

用符号 $N_{i,n}(u)$ 表示第 $i$ 个控制点的 $n$ 次样条基函数,其中 $u$ 对应于参数空间(节点范围)。递归定义如下

Non-Uniform Rational B-Spline (NURBS)

Intro

非均匀有理B样条(Non-Uniform Rational B-Spline, NURBS)是ISO颁布的工业产品数据交换标准中作为定义工业产品几何形状的唯一数学方法。相关的如 Bezier样条、有理Bezier、均匀B样条和非均匀B样条都统一到 NURBS 中。

其中,

  1. 非均匀(Non-Uniform)指控制点的作用范围可以改变
  2. 有理(Rational)指采用有理多项式定义

Infer

Conclusion

Appendix

Reference
  1. B-spline Curves: Important Properties
Archive

百度网盘 / 3knx